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Ab i n i t i o  quantum chemica l  t e c h n i q u e s  have been used t o  i n v e s t i g a t e  

weakly b u n d  complexes of H20 and SO2. An energy gradien t  program was used to  

locate s table  s t r u c t u r e s  for the H20-s02 complexes and SCF c a l c u l a t i o n s  were 

carried ou t  to  determine t h e  binding energies of complexes wi th  mul t ip l e  water 

molecules .  A 4-31C basis se t  was used f o r  most p o t e n t i a l  e n e r g y  searches. 

More a c c u r a t e  basis se t s  inc lud ing  a g e n e r a l l y  c o n t r a c t e d  basis set w i t h  d 

orbitals on the s u l f u r  were used f o r  geometry and binding energy v e r i f i c a t i o n .  

For single water complexes f i v e  d i f f e r e n t  stable geometries were located, wi th  

- 

b i n d i n g  e n e r g i e s  between 4 and 11 Kcal mol” s u g g e s t i n g  a b i n d i n g  s h e l l  for 

H20 around SO2 and a mechanism for the formation of an S02-containing water 

d r o p l e t .  Very l i t t l e  charge  t r a n s f e r  between SO2 and H 2 0  was p r e s e n t .  

Addition of more than one H20 was found t o  be ene rge t i ca l ly  favorable althcugh 

t h e  a d d i t i o n  of t h e  f o u r t h  water i n  c e r t a i n  g e o m e t r i e s  d i d  n o t  i n c r e a s e  t h e  

s t a b i l i t y  of the complex. An a l t e rna t ive  mechanism f o r  t he  tropospheric, gas  

phase production of acid r a i n  is suggested. 
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Introduction 

The oxidation of So2 is an important chemical process. The menomenon of 

qqacid rain" involves the oxidation of s u l f u r  containing species including SO2 

to  form SO3. Hydration is involved to give H2SO4 which i n  turn is ultimately 

precipitated as sulfates.' ?he influence which water plays on the kinetics of 

oxidation is less clear. However, Rees noted a 4.7 x lo3 fold increase i n  the 

r a t e  of photo oxidation of SO2 in ' the  283% re la t ive ly  h u m i d i t y  of a Wilson 

cloud chamber over that  i n  the absence of water.' SO2 may also act  as  t h e  

nuclestion center fo r  aerosol formation. The exact mechanism of such a 

process, should it exist, is not known. 

The stability of a complex of SO2 and H20 w a s  first suggested by Ph i l l i p s  

on the basis of results of semiempirical ca l c~ la t ions .~  Holland and Castleman 

using CND0/2 calculations suggested that an SO2 H20 adduct should be stable 

i n  the gas phase and reported a b i n d i n g  energy of 145 mH and a large dipole 
moment. 4 

Evidence for the existence of H20 SO2 produced from the  photolysis of 

H2S i n  sol id  O2 a t  15K by ultraviolet  l i g h t  is presented by Tso and Lee who 

conducted an FTIR s t u d y  of the photolysis m i ~ t u r e . ~  Identification w a s  based 

on shifted vibrational bands of SO2 and H20. 

The s t a b i l i t y  of SO2-water complexes has a lso been suggested from 

molecular beam measurements, and electric deflection experiments indicate a 

large dipole moment for the complex. 6 

Although there have been no ab i n i t i o  calculations of the SO2 H20 

Ab ini t io  calculations 

- 
complex there are calculations for related complexes. 

on So2 and So2 HF 8 show stable complexes for a variety of geometries. 

An important pair of calculations was done on the closely related complex H2 

so3 and its rearrangement t o  HzSO4. A semiempirical CND0/2  calculation by 

Holland and Castleman9 has been followed by a recent ab init io calculation by - 
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10 Chen and Plumner. 

? 

I n  a n  e f fo r t  t o  shed  some l i g h t  on a p o s s i b l e  role  of H20 i n  t he  

oxida t ion  of SO2 and e luc ida te  the s t r u c t u r e  and ene rge t i c s  of formation of  

water complexes of SO2, we have undertaken an ab i n i t i o  study. 

902 - (H$)1 

L 

To e x p l o r e  t he  p o s s i b i l i t y  of bound c o n f o r m a t i o n s  of H20 SO2 a n  SCF 

e n e r g y  g r a d i e n t  program' ' was used  t o  l o c a t e  stable s t r u c t u r e s  for t h e  

complex. The 4-31G basis  s e t  was used for the  i n i t i a l  p o t e n t i a l  e n e r g y  

searches. The minimum energy geometry was established when the l a r g e s t  energy 

gradien t  a t  any atom was reduced to  the order of lm Hartree per Bohr. 

Five d i s t i n c t  conformations of the s i n g l e  water complex were found to  be 

bound. The total energ ies  for the complexes and 

the molecular fragments as w e l l  as the binding energ ies  are given i n  Table 1. 

The minimum energy geometry information is given i n  Table 2. 

These are shown i n  Figure 1. 

Confo rma t ions  I11 and I V  bear t h e  c l o s e s t  r e l a t i o n s h i p  t o  classical  

hydrogen bonded s t ruc tu res ,  having respec t ive ly ,  one and two such bonds, and 

no  s i g n i f i c a n t  b i n d i n g  i n t e r a c t  i o n  between t h e  water' oxygen and t h e  s u l f u r  

atom. Conformat ion  I, t h e  most weakly bound, is a t  t h e  o p p o s i t e  end of t h e  

scale wi th  no hydrogen bonding, but has a favorable dipole i n t e r a c t i o n  and a 

loose  coordination between the water oxygen and the  s u l f u r  atom. Conforma- 

t i o n s  XI and V exh ib i t  intermediate characteristics wi th  both hydrogen bonding 

and 0-S c o o r d i n a t i o n .  Except for t h e  i n t e r p l a n a r  a n g l e  between t h e  two 

moie t ies ,  conformation V,  the most s t rong ly  bound, exhibi ts  the e n e r g e t i c a l l y  

most favorable alignment of the fragment dipoles. 

Hj'drogen t r a n s f e r  w i t h  subsequent cnarge and structural r e l a x a t i o n  from 

either conformation I1 or V would lead t o  the presumed s t r u c t u r e  of su l furous  

acid. The coordination of the  water oxygen and s u l f u r  atom i n  conformations 

I ,  11, and V could  a l s o  f a c i l i t a t e  o t h e r  r e a c t i o n s  l e a d i n g  t o  o x i d a t i o n  of 
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I n  c o n f o r m a t i o n  I11 t h e  o u t - o f - p l a n e  a n g l e  of r o t a t i o n  of t h e  

nonhydrogen-bonded OH is very s o f t  e n e r g e t i c a l l y  a n d  no a n g l e  is f a v o r e d  

by more than a few t e n t h s  of a milliHartree. Conformation V was suggested by 

the r e s u l t s  of a semiempirical ca l cu la t ion4  but  the minimum energy geometry 

r e s u l t  here ind ica t e s  a preference for a cis arrangement rather than the t r a n s  

arrangement of the semiempirical ca lcu la t ion .  

To examine  t h e  effect  of b&is set s i z e  on the b i n d i n g  e n e r g y  and 

geometry two a d d i t i o n a l  SCF energy g r a d i e n t  c a l c u l a t i o n s  were performed or. 

c o n f o r m a t i o n  V. I n  t h e  f irst  c a l c u l a t i o n  a d o u b l e  zeta basis set was 

employed. The p r i m i t i v e  b a s i s .  set, a Huzinaga s u l f u r  (12s /8p) ,  oxygen 

(9s /5p) ,  hydrogen (4s) set, was s e g m e n t a l l y  c o n t r a c t e d .  12*13 A Dunning 

cont rac t ion  of the  hydrogen and oxygen orbitals, 0(9~/5p)/<6111/41>, H(4s)/<3 

1 >, and a McLean c o n t r a c t i o n  of t h e  s u l f u r  o rb i ta l s ,  S (12~ /8p) /<62211 /627> ,  

were ~ h o s e n . ' ~ , ~ ~  

the superpos i t ion  error i n  the poorer basis set. 

?he binding energy decreased by 3.0 mH, a rough measure of 

In the second c a l c u l a t i o n  a 

set  of s u l f u r  3d o r b i t a l s  ( 53d = 0.6) was added t o  t h i s  basis set. The 

po la r i za t ion  func t ions  reduced the SO2 bond angle, decreased the SO2 dipole 

moment, and lowered the binding energy of the complex by an a d d i t i o n a l  2.4 mH. 

?he r e s u l t s  of these two ca lcu la t ions  are given i n  Tables 1 and 2. 

(H20)n 

Selected two-water complexes were s t u d i e d  u s i n g  t h e  e n e r g y  grad ien t  

program w i t h  t h e  4-31G basis s e t .  The c o n f o r m a t i o n s  are shown i n  Figure 2. 

Conformations V I  and VI1 are mirror image doublings of conformations I and V, 

r e spec t ive ly  . 



The interatomic dis tances  d id  not change s i g n i f i c a n t l y  i n  going to the 

two-water complexes.  The e n e r g i e s  are g iven  i n  Table 1. I: both cases the  

b ind ing  energy  of t h e  two-water complexes are a l i t t l e  less t h a n  twice t h e  

b i n d i n g  e n e r g i e s  of t he  one-water complexes i n d i c a t i n g  r e l a t i v e l y  l i t t l e  

in t e rac t ion  between the water molecules and almost independent addi t ion  of the 

second water molecule. 

In order to examine the  ene rge t i c s  of adding mult iple  waters t o  SO2 with 

t h e  double  zeta p l u s  s u l f u r  d o rb i t a l  basis se t ,  SCF c a l c u l a t i o n s  were r u n  

using a general ly  contracted basis set a t  f ixed  geometries predicted by the 

earlier g r a d i e n t  r e s u l t s .  The p r i m i t i v e  bas i s  s e t  was again t h e  Huzinaga 

s u l f u r  (1 2s/8p) ,  oxygen (9s/5p),  .hydrogen ( 4 s )  s e t  g e n e r a l l y  c o n t r a c t e d  t o  

<4s/3p>, <3s/2p>, and <2s>, respect ively.  12s13916 This se t  was augmented by a 

s i n g l e  set of 3d funct ions (53d = 0.6) on the sulfur atom. This basis set w a s  

s imilar t o  t h e  p r e v i o u s  double  zeta p l u s  d set and t h e  b ind ing  energy  of 

conformation V obtained wi th  t h i s  new basis set differed by only 0.2 mH from 

the  previous r e s u l t .  

The multiple-water complexes s tud ied  are shown i n  Figure 2. The total  

energ ies  and binding energies  a r e  given i n  Table 1. Conformation I with t h i s  

basis set produces a binding energy which is 72% of the binding energy derived 

from t h e  earlier 4-31G c a l c u l a t i o n .  This r e d u c t i o n  in b ind ing  energy  is 

v i r t u a l l y  iden t i ca l  to  t h a t  obtained for conformation V. The multiple-water 

complexes SO2 (H20), wi th  n = 3 and 4 differ by only a few mH from the sum of 

t h e  b ind ing  e n e r g i e s  of t h e  s e p a r a t e  bound p a i r s .  T h i s  assumes t h a t  t h e  

energ ies  of the  conformations I1 and I V  (which were not calculated wi th  t he  

l a r g e r  basis) can be approxinated by taking 70% of t h e  binding energy obtained 

w i t h  t h e  4-31G basis se t .  The b ind ing  energy  of t h e  f i v e - w a t e r  complex is, 

however,  s i g n i f i c a n t l y  less than t h e  s u m  of t h e  b ind ing  e n e r g i e s  of t h e  

separate bound-pairs. 
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Further improvements i n  the basis set and the inc lus ion  of c o r r e l a t i o n  

effects migh t  be expec ted  to i n c r e a s e  t h e  p r e d i c t e d  b i n d i n g  e n e r g i e s  by as 

much as 20 percent. 17,18 

The impl ica t ions  of the a d d i t i v i t y  of the binding energ ies  suppor ts  the 

notion that the bonding in t e rac t ion  is nea r ly  purely electrostatic. Only when 

t h e  waters were c l o s e  enough t o  i n t e r a c t  w i t h  each other,  as i n  the f i v e -  

water complex, d id  the binding enet-gy fa l l  s i g n i f i c a n t l y  below the sum of the 

binding energies of the separate bound pairs. An i n t e r e s t i n g  c o r o l l a r y  to the 

approx ima te  a d d i t i v i t y  of t h e  b i n d i n g  e n e r g i e s  occur red  i n  t h e  three water 

complex, conformation VIII, which w a s  s l i g h t l y  more stable than predic ted  from 

the  binding energy additivit ies g r h a p s  due t o  a favorable alignment of the 

water d i p o l e s .  These r e s u l t s  s u g g e s t  t h a t ,  t h e  b i n d i n g  e n e r g y  of some 

mul t ip l e  water complexes which could be modeled by superposit ion of smaller 

complexes ,  but which have n o t  been i n v e s t i g a t e d  here, would d e v i a t e  

s i g n i f i c a n t l y  from a d d i t i v i t y  due t o  water-water in t e rac t ions .  

Although a Morakuma component a n a l y s i s l g  of the energy components of the 

H20 - So2 i n t e rac t ion  was not made, the r e s u l t s  obtained here suggest that the 

a n a l y s i s  would f o l l o w  tha t  for  the  NH3 SO2 complex7 as  d i s c u s s e d  by 

Kollman.20 Mulliken population analyses21 of the r e s u l t s  of SCF c a l c u l a t i o n s  

on the H20-S02 complex using the best basis set show a small charge transfer 

r e s u l t i n g  i n  a small negative charge on the SO2. With the 4-31C 

basis  set t h e  c h a r g e  t r a n s f e r  was abou t  f i f t y  p e r c e n t  l a r g e r ,  a consequence  

of basis set s u p e r p o s i t i o n  e r r o r .  The 4-31G bas i s  s e t  c a l c u l a t i o n  for 

c o n f o r m a t i o n  I V  produced the  unique  r e s u l t  of a charge t r a n s f e r  i n  t h e  

opposite d i r e c t i o n  from a l l  the o ther  r e s u l t s .  Since the charge t r a n s f e r  and 

po la r i za t ion  affects are small, the minimum energy geometry is determined by a 

b a l a n c e  o f  t h e  e l e c t r o s t a t i c  ene rgy  and t h e  exchange r e p u l s i o n  energy .  

However, u n l i k e  the NH3 SO2 complex, t h e  minimum energy o r i e n t a t i o n  for the 

See Table 1. 
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H20 and SO2 fragments i n  conformation V is closer t o  that  predicted solely 

from consideration of the dipole-dipole interaction. 

?he H-bonded complex, conformation 111, has a binding energy (4.7 Kcal) 

which is v i r tua l ly  the same a s  tha t  obtained for the HF SO2 complex 

(5Kcal).$ "he minimum energy complex, conformation V, has a binding energy 

(10.9 Kcal) very close to  t h a t  obtained for the NH3 SO2 complex (9.3 K ~ a l ) . ~  

It should be noted that inclusioh of d o rb i t a l s  i n  the s u l f u r  basis s e t  

reduced the b inding  energy of NH3 SO2 from 10.4 Kea1 t o  9.3 Kcal, an e f fec t  

that  was also observed i n  the  H20  SO2 calculations. The CND0/2 r e su l t s  of 

Castleman gave a much l a r g e r  b inding  energy (98.3 Kcal) and a different  
minimum energy geometry. 4 

I n  the analysis of his  molecular beam e l e c t r i c  deflection resu l t s  

Castleman, remarks on the existence of species with large dipole moments that  

he a t t r ibu tes  t o  H20 SO2 complexes.6 The dipole moments for some of the 

complexes were calculated i n  t h i s  s t u d y  and are  reported i n  Table 2. These 

values are a l l  overestimated, particularly those from calculations which did 

not include sulf 'ur d orbitals i n  the basis set. 

lhe gradient SCF program can also be used to produce force constants and 

fundamental frequencies for vibrational modes. However, the e q u i l i b r i u m  

geometries were not converged to sufficient accuracy to enable predicting the 

s i zes  and s i g n s  of the frequency s h i f t s  of SO2 and H20 vibrations upon 

complexation. Better convergence would allow comparison with the experimental 

I R  spectroscopic results of Tso and Lee who claim t o  have evidence for the 

existence of the H20 SO2 complex. 5 

There are two implications from these results for acid rain chemistry. 

'ke most widely accepted mechanism for the tropospheric, gas phase production 

of H2S04 is as follows: 
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O3 + 0, L 

+ H20- 2HO 

.J 
+ M* 

%3 + H20 +MJH;?so4 

'kis ab initio study shows that an H20 SOz complex is predicted to 

and therefore an alternative to steps (2) and (3)  above 19 suggested: 
-- 

H20 + a2 . 
+M* (2') 

O('D) + H20 SO2+0H + H0S02 (3')  
Thus the react ion which produces the important intermediate HOS02 be 

bimolecular rather than terrrlolecular. An estimate of the concentration c 

complex and comparison of the activation energies from the alternative 

needed to decide between them. Other (speculative) possibilities wc 

include : 

(3") 

(3" 1 )  

?he second implication for acid rain chemistry comes from the results of 

the multiple-water complexes. There appears to be a shell of bonding sites 

for H20 around a central SO2. This suggests the formation of a nucleation 

center with additional waters outside the initial sphere added in a typical H- 

bonded fashion to waters already in the complex. h e  energetics are favorable 

but a discussion of the position of equilibrium would have to include an 

evaluation of the entropy changes for the process. ?he formation of an So2- 

containing droplet would allow heterogeneous chemistry to proceed. 

a 



I n  summary, an energy gradient program was used  t o  lot 

sWuctures for H20 SO2 complexes and SCF calculations were car1 

determine the binding energies of complexes w i t h  multiple water rno, 

4-31G basis set was used for most potential energy searches. More 

basis sets including a generally contracted basis set  wi th  d orbita. 

sulfur atom were used for geometry and binding energy verification. 

water complexes f i v e  different stable geometries were located, w i t h  

energies between 4 and 11 Kcal mol'' suggesting a binding shell for H20 

So2. Very l i t t l e  charge .transfer between SO2 and H20 w a s  present. Ad 

of more than one H20 was f'ound to be energetically favorable and approxin 

additive up t o  four added waters. An al ternat ive mechanism for 

tropospheric, gas phase production of acid rain is suggested. A process 

the formation of an containing water droplet is advanced. 
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I 

I1 

111 

IV 

V 

VI 

Table 1. SCF t o t a l  e n e r g i e s  (Har t r ees ) ,  b ind ing  e n e r g i e s  (Kcal mol” 
parentheses,  and t o t a l  charge on SO2 of SO2 (H201n complexes. 

i n  

Geometry Optimized Geometry Fixed 

-75 -9086 

-546.3733 

-622 a2894 (4 7 

-622 2943 (7 e 8  

-622 -2894 (‘4 -7 

-622 2902( 5 2 

-622.2993(10.9> 

-698.2120(13*5) 

-76.01 10 

-546 971 9 

- 

-622.9974 (9.1) 

-76.01 10 

-547.1540 

-76.0121 

-547.1755 

-623.1930 (3 .‘4) 

- 

- 
-623.1 998(7.6) 

- 
-0.035 

-775.2437 (20.0) -0.061 - - - VI11 

-851.2560(20.1) -0.056 - 

Basis Set A B C D D 

A: 4-31G 
B: Double Zeta [$(12~/8p)/<62211/621>, 0(9s/5p)/<6111/41>, H(4s)/<31>3 
C: Double Zeta + Sulfur  d 
D: S(l2~/8p/ld)/<4~/3p/ld>, 0(9s/5p)/<3~/2p>, H(4s)/<2s> 



Table 2. Bond d i s t a n c e s ,  bond a n g l e s ,  and d i p o l e  moments for f r a g m e n t s  and 
complexes from SCF geomtry  optimizations 

Basis R(S0) (OS01 R(OH) L(HOH) ,!.A RA Dipole 
LB moment set 

0.951 111.2 -- -- 2.49 ---- H20 A -- 

so2 A 1.530 114.2 

B 1.535 113.0 c-- 

C 1.428 118.1 --- 

I A 1.531 113.1 0.951 111.0 -- 3.27 -- 
A 1.528/1.534 112.9 0.953/0.949 112.1 -- -- I1 

I11 A 1.525/1*531 114.3 0.953/0*950 110.6 -- 2.02 6.10 

I\? A 1.531 112.8 0.951 110.3 2.37 6.35 
r 9 0 . 4  

V A 1.533 113.6 0.953 112.5 h24.4 2.48 2.95 

B 1.541 112.6 0.953 113.2 G8g=4 25.9 2.49 2.92 

C 1.427 115.7 0.953 

V I  A 1.534 112.5 0.951/0.949 

V I 1  A 1.541 113.0 0.953 

All d i s t ances  are i n  Angstroms. 

,B, and RA see Figure 1 

Dipole moments are  i n  Debyes. A second 
For the d e f i n i t i o n  of set of bond lengths is given for asymetric complexes. 
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